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Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect

genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these

dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice

flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence

of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway

process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides

testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in

female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be

associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted.

Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as

why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.

KEY WORDS: Fisherian runaway, indirect genetic effects, interacting phenotypes, mate choice plasticity, mate preference learn-

ing, social evolution.

The social environment is arguably one of the most dynamic and

influential sources of environmental variation an organism might

experience during its lifetime (West-Eberhard 1983; Kent et al.

2008; Krupp et al. 2008). Social interactions are inherent in sexual

reproduction, but their influence can extend beyond the immediate

pairing of sexual partners to shape how females evaluate potential

mates. Of particular note is when the attractiveness of a male trait

to a female is enhanced or diminished by the wider social envi-

ronment in which it is expressed. For example, empirical studies

across a wide range of taxa have established that prior experience

of male ornaments influences female preferences (Qvarnström et

al. 2000; Hebets 2003; Bailey and Zuk 2009; Wong et al. 2011).

These social effects on female choice can manifest in a variety of

ways. Besides allowing for relative preferences, they can occur

through sexual imprinting (Slagsvold et al. 2002), mate choice

copying (Godin et al. 2005), context dependence (Royle et al.

2008), and learning (Svensson et al. 2010).

Quantitative genetic models of sexual selection have iden-

tified the primacy of genetic variance and covariance of orna-

ments and preferences for the elaboration of traits via a runaway
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process (Lande 1981; Kirkpatrick 1982; Mead and Arnold 2004),

but feedback from the social environment has not been integrated

in these models despite its potentially key role. Because such

feedback is critical to the model we develop below, it is essential

to provide a disciplined definition of “social feedback”: we de-

fine this to mean that the expression of female preferences varies

depending on the male genotypes that they experience. The field

cricket Teleogryllus oceanicus provides a specific empirical exam-

ple. A mutant wing morphology, called flatwing, eliminates the

ability of males to sing in some populations (Zuk et al. 2006). The

acoustic environment experienced by females developing in those

populations depends largely on the proportion of flatwing alleles

in the population; flatwing segregates as a sex-linked single-locus

trait (Tinghitella 2007), so a greater proportion of flatwing al-

leles directly translates to a more silent environment owing to

the greater relative abundance of silent males. Thus, the average

acoustic experience a female has will be related to the genotypes

of males in her environment. A number of studies have demon-

strated that the acoustic environment that T. oceanicus females

experience alters their choice of mates, suggesting that variation

in the social environment has a considerable impact on the evo-

lution of sexually selected traits (Bailey and Zuk 2008, 2009;

Bailey 2011; Rebar et al. 2011). Labile mating preferences may

reflect learning. In a wide variety of vertebrate and invertebrate

species, it is becoming increasingly recognized that learned mate

preferences reflect properties of the social environment in which

females develop (see e.g., Verzijden and Rosenthal 2011). Such

social effects appear to be more of a rule rather than an excep-

tion. For example, Drosophila serrata males alter their cuticular

hydrocarbon profile in response to the genotype of interacting

females (Petfield et al. 2005), and D. melanogaster males alter

their cuticular hydrocarbon profile in response to the genotypes

of males in their environment (Kent et al. 2008).

We model sexual selection using an interacting phenotype

approach, which incorporates indirect genetic effects (IGEs) that

occur when genetically influenced traits in one individual al-

ter the phenotype of an interacting partner (Moore et al. 1997;

McGlothlin et al. 2010). This framework provides a straightfor-

ward method of illuminating the evolutionary dynamics that arise

when male traits alter female preferences: when male secondary

sexual characters exhibit additive genetic variation, IGEs are ex-

pected to play an important role if female choice is affected by

the social environment imparted by those male traits. IGE models

demonstrate that social environments have a genetic basis, evolve,

and provide an evolutionary feedback that affects the rate and di-

rection of evolutionary change in phenotypes that are expressed

in social interactions (Moore et al. 1997; McGlothlin et al. 2010).

Interacting phenotype models and subsequent empirical work

have shown that understanding social effects changes how we

view the evolution of social traits. For example, breeding pro-

grams for social traits in livestock animals produce stronger re-

sponses to selection when IGEs contributed by the social environ-

ment are taken into consideration (Rodenburg et al. 2010; Wade

et al. 2010). Selection in domesticated chickens that manipulates

the effects of the social environment reduces pecking behavior

and cannibalism above and beyond direct selection on pecking

(Rodenburg et al. 2008). However, IGE models that could pro-

vide similar insights in a sexual selection context are lacking.

We develop such models here and provide testable predictions

that refine our understanding of the social context, genetics, and

evolution of secondary sexual characters.

Modeling Sexual Selection and
Social Environments
Consider a population of sexually reproducing diploid individ-

uals containing males with trait t and females with preference

p. Adopting standard quantitative genetic assumptions (Falconer

and Mackay 1996; Mead and Arnold 2004):

t = at + et (1)

This is the simplest partitioning (Falconer and Mackay 1996)

of the male trait into additive genetic effects, a, and all other

(abiotic environmental and nonadditive genetic) effects, e. For

simplicity, we assume that the male trait is a structure (such as

a morphological trait) and its expression, for example, how large

or showy it is (Darwin 1871), is unaffected by the social environ-

ment. In contrast, we allow the female preference, p, to poten-

tially depend on the social environment in which it is expressed

and therefore further partition the environmental term:

p = ap + ep + es (2a)

Female preference describes the male trait value females

prefer. By allowing the social environment to influence female

preference, we can explore the effects of how specific males in

a female’s environment influence her preference. Social effects

could influence female preference by changing the male trait value

that females most prefer, or the degree to which they discrimi-

nate against nonpreferred trait values. The new term, es , is the

social environment provided by males, which is determined by

the trait value of the males with whom the female interacts. This

abstract definition of the social environment can again be tied to

empirical examples such as the cricket one above. In that case,

the distribution of male genotypes contributes to the acoustic en-

vironment that females experience during development, and vari-

ation in the acoustic environment causes corresponding changes

in the expression of female preferences (Bailey and Zuk 2008,

2009; Bailey 2011; Rebar et al. 2011). For heuristic simplicity, we

will consider only one interacting male and one interacting trait.
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Interactions with multiple males can be incorporated by substi-

tuting the mean social environment; that is, the mean value for

all of the male traits, and evaluation of multiple traits by females

can be achieved using a multivariate model (Moore et al. 1997).

Neither of these changes the basic results.

Because the social environment reflects the male trait, we can

set es = �t ′, where t ′ is the trait value, t , of a male interacting

with a female. The prime indicates that the trait is expressed in

a social partner (i.e., not the trait of a focal individual for whom

the phenotype is being defined [Moore et al. 1997]). The impact

of the social environment is scaled by the coefficient �, which in

theory can take on any value from –1 to 1, and reflects the relative

importance of the social environment on the expression of a pref-

erence (Bleakley et al. 2010). The coefficient � is analogous to

m, the maternal effect coefficient in maternal effect models that

describes the strength of the effect that the mother’s phenotype

has on determining the phenotype of offspring independent of

direct genetic effects (Kirkpatrick and Lande 1989). Empirical

measurements of � have shown that it can be either negative or

positive, but it is typically strong (Bleakley et al. 2010; Bailey and

Zuk, in press). Being a mathematical constant, � can be thought

of as a population parameter as it is measured by the partial regres-

sion of the focal individual on interacting individual(s), holding

their genetic make-up constant (Moore et al. 1997; Bleakley et al.

2010). We also discuss the role of this coefficient further below.

Substituting for t ′ gives

p = ap + ep + �at ′ + �et ′ (2b)

Thus, the female preference is influenced by direct genetic,

ap, and environmental, ep, effects, plus indirect additive genetic,

at ′ , and environmental, et ′ , effects arising from male traits of

the interacting individual. As with standard quantitative genetic

models (Falconer and Mackay 1996), we assume no covariance

between additive genetic effects and environmental effects; like-

wise, the present model assumes that environmental effects and

IGEs contributed by the interacting partner, at ′ , are independent.

Social environments can exert positive or negative influences,

and in the context of sexual selection the coefficient � describes

the degree to which female preference is enhanced or diminished

as a result of interacting with a male trait t ′ (Fig. 1). This could

occur through changes in the values of male traits that females

prefer, as has been found in many birds and in wolf spiders (ten

Cate and Vos 1999; Hebets 2003), or the strength with which

that preference is exercised, as has been shown in crickets and

treehoppers (Bailey and Zuk 2009; Fowler-Finn and Rodriguez

2012). For example, � is positive if females learn about the avail-

ability and quality of males around them and then leverage that

information against their existing preferences to choose a better

male. The field cricket system discussed above provides an em-

Figure 1. The interaction coefficient �. The genotypic range of

a male trait that influences preferences, at′ , is portrayed on the

x-axis. The y-axis shows female preference, p, defined as the dif-

ference between the male trait value she chooses and the av-

erage male trait, p = (t − t̄). The inherent preference of females

is the y-intercept given by ap (solid circle). We illustrate females

with inherent preferences for greater than average male trait val-

ues, which should be prevalent under directional and open-ended

preferences. The change in acceptable trait values (dashed line) is

dictated by �. (a) � = 0. Female preference does not change across

the range of male phenotypes in the social environment. (b) � > 0.

Social interactions with larger male traits increase female prefer-

ences. (c) � < 0. Social experience decreases female preference.

The light shaded areas above the dashed lines indicate the male

trait values, relative to the average, that a female will accept given

her inherent preference and the social environment experienced.

Dark shading in (c) indicates conditions in which females accept

below average males.

pirical example of �; within a population, females increase their

choosiness after experiencing more attractive male songs (Bailey

and Zuk 2009; Rebar et al. 2011), which means that � is positive.

An example of negative � would be if, on average, females be-

come less choosy as a result of social interactions, such as when

female mate choice is abandoned in the face of strong male–

male competition. As such, � is determined by the population

of individual interactions. It is conceptually and mechanistically

distinct from the evolving traits under consideration, reflecting

the effect of an interaction, rather than the traits expressed in the

interaction, which in this instance are male ornaments and female

preferences.

Evolution depends on the nature of selection as well as genet-

ics. To model selection, we adapt standard definitions of fitness

(Iwasa and Pomiankowski 1995), where fitness associated with

natural selection on the male trait (WMN S ) centers around an opti-

mum and fitness associated with sexual selection (WMSS ) reflects

a preference for greater-than-average trait expression

WMN S = e−ct2
(3a)
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WMSS = ea p̄(t−t̄) (3b)

A male’s fitness depends on his trait value, t , and the natural

selection cost, c, of this value (eq. 3a). The trait also influences

fitness through mating (sexual selection; eq. 3b), where fitness

associated with the trait depends on the average female preference,

p̄. The constant a determines the steepness of the relationship

between female preference and male fitness. We assume a model

of preference most consistent with the existing data: preference

is scaled by the relative deviation of the male trait value from the

average male trait value in the population (Lande 1981). From the

fitness equations, we can generate selection gradients by taking

the partial derivatives evaluated at the population means t = t̄ and

p = p̄.

Given these equations, evolutionary change in t and p can be

estimated by examining the action of selection on the covariance

between the breeding value and phenotypic value for each trait

(Lande 1981). However, unlike the male trait t , female preference

p is influenced by more than direct additive effects; its breeding

value will include the IGEs contributed by the interacting trait

scaled by � (eq. 2b) (Moore et al. 1997). We begin by assuming

that there is no selection on preferences, which would be true at

the outset of selection (Kirkpatrick and Barton 1997). Later we

relax this assumption. Again making standard quantitative genetic

assumptions (Falconer and Mackay 1996; Mead and Arnold 2004)

including constant additive genetic variances and covariances, the

joint evolution of the male and female characters is

(
�t̄

� p̄

)
= 1

2

[(
Gt Btp

Bpt G p

)(
βMN S

0

)

+
(

Gt Btp

Bpt G p

)(
βMSS

0

)]
(4)

The 1
2 reflects the sex-limited expression of both traits, Gt and

G p are the additive genetic variances for t and p, respectively, and

Btp is the genetic covariance. There is also sex-specific selection

(β), which can be either directional sexual selection or stabilizing

natural selection. Other forms of selection are possible, such as

directional natural selection and stabilizing sexual selection, but

we restrict the forms of selection to those that are expected to result

in extreme trait elaboration via sexual selection (sensu Darwin

1871).

Changes in mean male trait values and mean female prefer-

ences are examined by evaluating these covariances at the popu-

lation means t̄ and p̄ and simplifying

�t̄ = 1

2
[GtβMN S + GtβMSS ] (5)

� p̄ = 1

2
[BptβMN S + BptβMSS ]

+ �
1

2
[GtβMN S + GtβMSS ]

(6)

Equations (5) and (6) give an interacting phenotype model

of sexual selection.

INTERPRETATION: THE BASIC MODEL

The influence of IGEs that arise when female preference ex-

pression reflects the social environment is clear. The first half

of equation (6) shows that the change in average female prefer-

ence is a function of selection acting on females through genetic

covariance with males, as predicted by Fisher (1958), modeled

by Lande (1981) and confirmed by others (Kirkpatrick 1982;

Pomiankowski et al. 1991; Iwasa and Pomiankowski 1995; Hall

et al. 2000; Mead and Arnold 2004). However, the second half

shows that preferences can also change as a result of selection act-

ing on the male trait, filtered through �, when there are IGEs. The

social environment therefore has a genetic basis, it can evolve, and

this evolution feeds back to affect the trait influenced by social

context. As a result, female preferences can also evolve indepen-

dently of a covariance between direct genetic effects. This does

not diminish the importance of the covariance. Rather, it shows

that a covariance between direct additive effects of the prefer-

ence and the male trait can be sufficient but is not necessary for

runaway evolution (Fig. 2).

The ability to achieve runaway in the absence of a genetic

covariance has several profound effects on the likelihood of elab-

oration by sexual selection. One of the criticisms of the original

model of the Fisher runaway process is that it depends on in-

direct selection for the evolution of female mating preferences

(Kirkpatrick and Barton 1997) because selection on preferences

acts through the genetic covariance, which effectively weakens

the extent of evolutionary change. This theoretical difficulty dis-

appears in our model. Given a sufficiently strong �, female pref-

erence can evolve identically to the male trait even in the absence

of direct genetic effects on the preference (eqs. 5 and 6). Male

sexual signals and displays often occur in social contexts such as

leks or mating rendezvous, and under these conditions the social

environment might be particularly important (a strong positive �)

thereby facilitating runaway simply because of the importance of

the male trait evolution for both characters. This enhancement

of the joint evolution does not rely on a measurable genetic co-

variance between the direct additive genetic effects of the male

trait and the female preference, which may explain why a sur-

prising number of studies have found lower than expected—or

no—covariances, as in jungle fowl (Gallus gallus) (Johnson et

al. 1993), collared flycatchers (Ficedula albicollis) (Qvarnström
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Figure 2. The effect of IGEs on the likelihood of runaway sexual

selection. The solid circle represents a population that has been

displaced slightly from a line of equilibrium with positive slope α,

indicated by the heavy line. The dashed lines indicate the slope

of the population’s evolutionary trajectory as derived in the main

text and indicated above the graphs. Both graphs show a situation

in which covariance between trait t and preference p is nonexis-

tent. The direction of evolution is indicated by small arrows. Traits

lacking IGEs (i.e., when � = 0) are shown in (a). The male trait

evolves to a stable optimum due to the action of natural selec-

tion, and female preferences do not change except by drift. (b)

The social environment provided by male traits affects expression

of female preference. If � exceeds α, the population evolves via

runaway along a slope and in a direction indicated by the dashed

lines. Once a covariance develops, runaway is enhanced.

et al. 2006), and the fruit fly D. montana (Ritchie et al. 2005). Also

consistent with IGEs, the buildup of covariance has been found

to be heterogeneous and dependent on environmental factors in

other systems (Jia and Greenfield 1997).

Initiation of Runaway
Because the genetic covariance between additive effects on male

traits and female preferences is not required for the joint evolution

of the traits, our model also suggests a pivotal role for social

influences in the initiation of the runaway process. Fisher (1915,

1958) provided a verbal model for the origin of the runaway. It is

worth quoting him in full:

“The most difficult and important act of choice is the choice
of a mate; and this would have been rendered possible in the
first instance by focussing the mind, as yet unable to make
any profound judgement, upon certain conspicuous points
which readily attract attention, and which attain by Natural
Selection an innate prejudice in their favour.” (Fisher 1915,
p. 186)

Fisher’s suggestion was that male traits that eventually be-

come elaborated through the runaway process initially confer a

small natural selection advantage to their bearer and are noticed

by females; in other words, they allow the male to stand out in a

crowd. Our model provides an analytical solution for this origin.

Initially, there will be no genetic covariance between the male

trait and female preference. Sexual selection on the male trait is

nonexistent. Thus, the only selection acting on the male trait arises

from natural selection

�t̄ = 1

2

[
GtβMN S

]
(7)

However, even in the absence of the genetic covariance be-

tween t and p, � p̄ can be positive because of the social effects

of the male trait. Setting Bpt = 0 and βMSS = 0 in equation (6):

� p̄ = �
1

2
[GtβMN S ] (8)

INTERPRETATION: INITIATION OF RUNAWAY

A small natural selection advantage for the male trait results in a

positive � p̄ provided that � > 0. The social environment thereby

provides a mechanism for initiating the Fisher process when there

is only natural selection on the male trait, prior to the buildup

of genetic covariance. However, IGEs mediated through social

environments can push the two initially uncorrelated traits closer

toward a coevolutionary trajectory, resulting in faster runaway and

buildup of a covariance. Social effects that might accomplish this

correspond to Fisher’s (1915) original suggestion for factors that

initiate runaway. For example, social interactions could make it

easier for females to find a mate, through a sharpening or tuning

of perceptual ability, or in Fisher’s (1915, p. 185) words: “[t]he

task of determining the different qualities and abilities needed for

biological success, and of recognising and weighing them within

a short acquaintanceship. . .by the keenest observation.”

A number of systems provide empirical examples of how

social interactions might “focus the mind” of choosing individu-

als. Learning could play a role. In several role-reversed damselfly

species, for example, males lack innate preferences for female

color morphs, but males show a learned sensory bias toward one

or the other morph depending on prior experience with the dif-

ferent morphs (Fincke et al. 2007; Gosden and Svensson 2008,

2009; Takahashi and Watanabe 2010). During the early stages of

trait and preference coevolution, these and other social effects that

enhance the expression of preferences could contribute IGEs that

attenuate the covariance required to generate unstable runaway

conditions.

Conditions Favoring Runaway
The second step in the Fisher process is the runaway itself; the

exponential evolutionary increase in traits that occurs during the

coevolution of male ornaments and female preferences (Mead and

Arnold 2004). A robust definition for the conditions under which
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Fisherian runaway occurs was one of the most influential results

of Lande’s (1981) original sexual selection model. In his model,

populations evolve toward a line of equilibrium in the case of

a stable equilibrium, or exponentially away from the line in the

case of an unstable equilibrium. Evolution away from the line

of equilibrium results in rapid exaggeration or diminution of the

trait and preference, and the runaway process refers to this unsta-

ble condition of rapid evolution. The stability of the equilibrium

depends on its slope relative to the evolutionary trajectory of the

population. When the population trajectory exceeds the slope of

the line of equilibrium, the equilibrium is unstable and runaway

occurs. The evolutionary trajectory of the population is described

by the rate of change in female preference relative to the rate of

change in the male trait, or the genetic covariance between trait

and preference, Bpt , relative to the genetic variance in the male

trait, Gt (Lande 1981). Instability and runaway therefore occur

when Bpt

Gt
> α, where α is the slope of the line of equilibrium

under the model of mate choice we use here (Lande 1981).

We might expect that IGEs contribute more to the conditions

favoring runaway than just the direct genetic variances and co-

variances. Lande (1981) derived the slope Bpt

Gt
by evaluating � p̄

�t̄ .

We can similarly derive runaway conditions using equations (5)

and (6):

� p̄

�t̄
=

1
2 [BptβMN S + BptβMSS ] + � 1

2 [GtβMN S + GtβMSS ]
1
2 [GtβMN S + GtβMSS ] (9)

Simplifying yields conditions for runaway when

Bpt

Gt
+ � > α (10)

Expression (10) demonstrates why social environments con-

tinue to influence runaway even after covariance is established.

Populations perturbed from equilibrium will evolve along lines of

constant slope given by Bpt

Gt
+ �. Positive values of � increase

the likelihood of runaway sexual selection by conferring steeper

slopes (Fig. 2).

Given this key result, it is necessary to evaluate whether IGEs

mediated by the social environment alter equilibrium conditions.

Substituting selection gradients (first-order derivatives of 3a and

3b) into expressions for the evolution of t̄ and p̄ (eqs. 5 and 6)

gives:

�t̄ = 1

2
[Gt (−2ct̄) + Gt (a p̄)] (11)

� p̄ = 1

2
[Bpt (−2ct̄) + Bpt (a p̄)]

+ �

2
[Gt (−2ct̄) + Gt (a p̄)]

(12)

Setting �t̄ and � p̄ equal to zero defines two isoclines, both

of which yield the same line of equilibrium as found in quantitative

genetic models of runaway (Mead and Arnold 2004)

p̄ =
(

2c

a

)
t̄ (13)

Thus, while the conditions for runaway are strongly influ-

enced by social environments (eq. 10), equilibrium conditions do

not change.

INTERPRETATION: CONDITIONS FAVORING

RUNAWAY

The relationship in equation (10) again highlights the importance

of � in sexual selection. A sufficiently large and positive � can

cause populations positioned off the line of equilibrium to evolve

along a trajectory of slope greater than α even if the covariance

between male traits and female preferences is initially absent. As

a consequence, the evolution of � itself can make an important

contribution to the evolutionary elaboration of a trait. To date,

there are only a handful of studies that examine � in any social

interactions (Bleakley et al. 2010) and only three that estimate �

in the context of sexual selection (Bleakley and Brodie III 2009;

Chenoweth et al. 2010; Bailey and Zuk, in press). All three suggest

that � can be nonnegative, of substantial magnitude, and subject

to evolutionary change. If � is of sufficient magnitude to increase

the slope of the population’s trajectory above that of the line of

equilibrium, the runaway process will begin or continue (Fig. 2).

Because female preferences will evolve faster when � is large,

the covariance between the male trait and female preference will

also develop more readily as this term approaches 1.

Although runaway sexual selection is enhanced by a positive

�, a negative � will retard evolution. This result has an appeal-

ing intuitive explanation. If social interactions with males dampen

the expression of female preferences, � is negative and a larger

genetic covariance would be required for runaway. When social

environments have a negative effect, we are therefore unlikely to

find extravagant sexual ornaments evolving by the Fisher process,

which leads to the prediction that we are unlikely to find negative

values of � in populations where sexual selection on male traits

is strong. In such populations, we might predict that elaboration

occurs through male–male competition exclusively. A further pre-

diction also follows: if � varies between populations or habitats,

or fluctuates temporally, buildup of genetic covariance between

female preferences and the preferred male trait will occur in a

patchy manner.

Including Costs of Preferences
Our initial model provides the simplest starting point for a quanti-

tative genetic model of sexual selection incorporating IGEs gener-

ated by the social environment, but it assumes no direct selection

on p. This corresponds to the initial conditions for sexual se-

lection, where weak preferences reflect a preexisting condition
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without costs (Fisher 1915, 1958). Once preferences are estab-

lished and begin to evolve, costs are biologically more realistic

if not inevitable. Incorporating costs to mate choice typically re-

sults in a point of equilibrium rather than a line of equilibrium for

the joint evolution of the trait and preference (Mead and Arnold

2004). However, Fisherian runaway still occurs under a wide

range of scenarios where preferences have a cost (Kirkpatrick

and Barton 1997; Hall et al. 2000; Houle and Kondrashov 2002).

For example, subsequent models have included viability selection

on females and different fitness equations (Pomiankowski et al.

1991; Iwasa and Pomiankowski 1995; Pomiankowski and Iwasa

1998). We can extend an influential Iwasa and Pomiankowski

(1995) quantitative genetic model of trait–preference coevolution

using the IGE framework.

Male traits and female preferences are defined as in equations

(1–2b). We modify natural selection on the male trait in line with

the Iwasa and Pomiankowski (1995) model, such that natural

selection initially incurs very small costs but then rapidly increases

with trait elaboration. The male fitness equations become

WMN S = e−ct4
(14a)

WMSS = ea p̄(t−t̄) (14b)

Male sexual selection is unchanged and reflects a model of

female choice in which the fitness of the male trait depends on the

average female preference, plus his deviation from the average

male trait. The relative influence of female preference on male

fitness is scaled by the constant a. The natural selection cost of the

male ornament is indicated by c. We now also include selection

on female preferences

WFN S = e−bp2
(14c)

where b is a parameter of small magnitude describing a cost of

female preference.

Finally, mutation bias on the male trait is indicated by u,

which is the same order of magnitude as b.

Joint evolution of the two traits becomes(
�t̄

� p̄

)
= 1

2

[(
Gt Btp

Bpt G p

)(
βMN S

βFN S

)

+
(

Gt Btp

Bpt G p

)(
βMSS

0

)]
+
(

−u

0

)
(15)

Genetic variances and the covariance are indicated as Gt ,

G p, and Btp, as before. βi indicates selection gradients gener-

ated by taking the first-order derivatives of the appropriate fitness

equations, evaluated at the population means.

Equilibrium and runaway conditions can now be derived us-

ing fast and slow dynamics adapted from population biology ap-

plications (Pomiankowski et al. 1991; Iwasa and Pomiankowski

1995). Fast dynamics describe the behavior of evolving popu-

lations influenced by parameters of relatively large magnitude,

whereas slow dynamics model the behavior when influenced by

parameters of small magnitude, which include female preference

costs and mutation bias. The fast dynamics can be modeled by

disregarding the smaller parameters b and u, incorporating IGEs,

and substituting in the selection gradients. Then, �t̄ and � p̄ can

be written as separate equations:

�t̄ = 1

2

[
Gt (a p̄) + Gt

(−4ct̄3
)]

(16)

� p̄ = 1

2

[
Btp (a p̄) + Btp

(−4ct̄3
)]

+ �

2

[
Gt (a p̄) + Gt

(−4ct̄3
)]

(17)

We evaluate equilibrium conditions under fast dynamics by

letting �t̄ and � p̄ equal zero to define a curve of equilibrium.

Rearranging and simplifying gives the curve

p̄ = 4ct̄3

a
(18)

This is identical to the curve of equilibrium found by Iwasa

and Pomiankowski (1995). Runaway sexual selection will occur

when the slope of the line of equilibrium, 12ct̄2

a , is less than the

evolutionary trajectory given by � p̄
�t̄ . Evaluating the latter using

equations (16) and (17) yields runaway conditions when

Btp

Gt
+ � >

12ct̄2

a
(19)

This inequality is consistent with the result of our main

model: � influences the likelihood of instability and runaway,

the direction depending on its sign.

Decomposing the behavior of the system into slow dynamics

allows us to describe the effects of preference cost b and mutation

bias u on evolutionary dynamics once a population has evolved

close to the line of equilibrium. Including a cost to preference

collapses the line of equilibrium to a point, and to determine where

that point lies it is necessary to derive the per generation change

in mate preferences via slow dynamics. This is done by modeling

the dynamics of a point close to the line of equilibrium defined

by t̄ = t̂( p̄) + εx( p̄), where ε represents a constant of the same

magnitude of preference cost and mutation bias (Pomiankowski

and Iwasa 1993). Substituting into equation (15) to solve for � p̄

� p̄ = G p

2

(
βFN S + ua

)
(20)

However, in our case, the expectation or breeding value for

G p is not only the direct additive genetic effects (āp) but also

includes IGEs contributed by the interacting male phenotype,

�(āt ′ ). As before, t ′ is the value of the male trait t expressed by
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the interacting partner. Substituting the first-order derivative of

the female fitness function 14c for the selection gradient, plus our

expectation for G p yields

� p̄ = āp + �āt ′

2
(−2b p̄ + ua) (21)

Change in the male trait at that point only depends on the

female preference (Iwasa and Pomiankowski 1995)

�t̄ ≈
(

a p̄

4c

) 1
3

(22)

Evaluating equations (21) and (22) at equilibrium gives the

point (( ua2

8bc )
1
3 , ua

2b ), which is identical to the equilibrium found in

the model lacking IGEs, and depends only on the constants a, b,

c and mutation bias u.

Iwasa and Pomiankowski (1995) derive points at which fast

dynamics transition to slow dynamics. One key point describes

the maximal range of values of t̄ and p̄ an evolving population can

reach before slow dynamics dominate and the population evolves

back to the line of equilibrium. This point is given by

( p̄A, t̄A) =
⎛
⎝2a2G

3
2
p

3c
√

6
,

aG
1
2
p

c
√

6

⎞
⎠ (23)

This transition point in our model becomes

( p̄A, t̄A) =
⎛
⎝2a2

(
āp + �āt ′

) 3
2

3c
√

6
,

a
(
āp + �āt ′

) 1
2

c
√

6

⎞
⎠ (24)

Positive values of � increase the potential range of trait

values that can be reached via the fast dynamics of runaway.

Populations can therefore cycle between larger values of t̄ and

p̄ when � is large and positive, and in contrast, they will cycle

between more restricted values of t̄ and p̄ when � < 0.

INTERPRETATION: PREFERENCE COSTS AND THE

EXTENDED MODEL

The extended model describes cyclical coevolution of traits and

preferences, where populations displaced from an unstable curve

or point of equilibrium evolve under runaway conditions until

slow evolutionary dynamics, influenced by smaller parameters

describing the costs of female preference and mutation bias on

male traits, drive the population back toward equilibrium (Iwasa

and Pomiankowski 1995). Social environments clearly affect this

dynamic by altering the potential for runaway and either enhanc-

ing or diminishing the possible range of traits and preferences the

population can reach during cyclical evolution, depending on the

precise strength and direction of �.

Taken together, these results indicate that the influence of

social environments is consistent when incorporated into sexual

selection models that allow costs of choice and mutation bias. In

line with these findings, we expect that social environments are

unlikely to influence equilibrium conditions in general, but that

they will strongly influence the conditions for runaway because

the evolutionary trajectory of populations displaced from equilib-

rium is augmented when � > 0 and retarded when � < 0. IGEs

do not affect equilibrium dynamics because selection, not ge-

netics, determines these dynamics (Lande 1981). However, IGEs

can substantially impact runaway behavior around those equilib-

ria regardless of the model used, and the stronger the influence

and importance of the social environment, the more likely this is

to be an unstable rather than a stable equilibrium.

Discussion
Well before the models of runaway sexual selection in the 1980s

(Mead and Arnold 2004), the importance of social interactions

above and beyond those involved in the actual act of copulation

was acknowledged (see e.g., Bateson 1978; Janetos 1980). Our

model expands the social context of sexual selection theory to ex-

plicitly acknowledge IGEs that arise from the social environment.

Incorporating IGEs into quantitative genetic models of sexual se-

lection shows that in many cases, the potential for runaway sexual

selection might be underestimated. Considering socially flexible

female choice refines our expectations for the genetic architec-

ture of male ornaments and female preferences, and clarifies the

conditions under which we should expect Fisherian runaway to

occur. Systems in which male mate choice predominates would

be expected to follow similar dynamics.

Four predictions amenable to empirical testing arise from

our model. First, IGEs arising from social environments in some

cases diminish the requirement for a genetic covariance between

female preference and male ornament traits. The need for a rel-

atively strong indirect selection arising from this covariance has

been a major theoretical difficulty, because it is not often expected

(Kirkpatrick and Barton 1997). Indeed, it is not often observed

empirically. The lack of published data on trait–preference covari-

ances might reflect the difficulty of obtaining such measurements,

but the fact that covariances have been difficult to detect likewise

suggests that they might simply be low in general. Our model

provides a way to reconcile the apparent paradox that elaborate

sexual ornaments are widely observed while the genetic condi-

tions thought to favor their rapid evolution via the Fisher process

are not (Svensson and Gosden 2007). Empirical estimates of the

genetic architecture of male ornaments and female preferences,

combined with information about the strength of � in the con-

text of interactions around those traits, would help to validate

the prediction that trait/preference covariances might be small or

negligible in far more cases than previously expected.

Second, social flexibility is expected to be common in

populations experiencing strong sexual selection. Large positive
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values of � increase the likelihood of runaway. Thus, strong so-

cial influences on the expression of female mating decisions are

predicted when male ornaments are under strong sexual selection.

This yields a useful prediction about when we should expect to

observe strong social flexibility in mate choice in natural systems,

which can be tested by relating variation in � to the strength of

sexual selection on male ornaments, using either intraspecific or

interspecific comparisons.

Third, heterogeneity in � across populations or species is ex-

pected to contribute to more rapid rates of divergence. Even when

the distribution of female preference values is homogeneous and

static, evolution via sexual selection will occur at different rates

and can lead to divergence on a relatively fine scale if social

environments vary spatially (Agrawal et al. 2001; Gosden and

Svensson 2008). Such variation can play an important role in set-

ting up divergent sexual selection pressures in populations that

are subdivided or otherwise experience restricted gene flow. This

prediction can be tested by relating variation in � to the strength

and direction of sexual trait divergence and reproductive isolation

among populations. We know that � can evolve (Chenoweth

et al. 2010). Empirically, genetic heterogeneity among popu-

lations in terms of interacting partners influences mating in

Drosophila (Krupp et al. 2008), and heterogeneity in social flex-

ibility in female choice among geographically isolated popula-

tions of the cricket T. oceanicus results in differing values of �,

which range from approximately –0.6 to 0.4 (Bailey and Zuk,

in press). Laboratory studies would further resolve the causal re-

lationship; for example, by using inbred strains (Bleakley and

Brodie III 2009), artificial selection (Chenoweth et al. 2010), or

mixed isofemale or mutant lines (Kent et al. 2008; Krupp et al.

2008) to manipulate the social environment and thereby �, and

assess knock-on effects on the Fisher process. For example, mate

choice learning has been implicated in population divergence and

reinforcement (Servedio et al. 2009; Svensson et al. 2010), and

IGEs arising through social interactions inherent in learning about

the social environment could generate the evolutionary dynamics

observed in our model if they affect the evolution of traits under

sexual selection. Variation in learned mate preferences, and there-

fore �, among isolated populations or experimental lines is likely

to exist in many tractable systems, including D. melanogaster

(Dukas 2005), damselflies (Gosden and Svensson 2008), and gup-

pies (Magurran and Ramnarine 2004).

Finally, our model predicts that traits displayed in a social

setting should experience greater elaboration via the Fisher pro-

cess because of the IGEs arising from flexible female preferences.

The comparative method provides a framework for testing this, for

example by examining an assemblage of insect species showing

variation in the degree of social interaction prior to mating, and

relating it to variation in male ornament elaboration. Systems in

which the secondary sexual traits of multiple taxa are well char-

acterized, for example Drosophila spp. or some passerine groups,

might provide fertile ground for empirical testing.

In conclusion, our model highlights the importance of so-

cial flexibility in female preferences, a topic that has attracted

considerable attention in the literature but surprisingly few theo-

retical treatments (Widemo and Sæther 2005). Flexibility in mate

choice can be caused by numerous mechanisms that have attracted

the attention of researchers, so the model presented here has a

potentially wide application. However, not all social influences

will have the same effect: when flexibility arising from social

environments opposes selection on female preferences through

genetic covariance, the genetic architecture of male traits and fe-

male preferences may fall short of what is needed to initiate or

sustain runaway. To test the prediction that the opportunity for

trait/preference elaboration covaries with �, it is necessary to

know in what systems and under what circumstances flexibility

in female choice translates to a negative or a positive �. Empirical

measures of both IGEs and � in the context of sexual selection

are needed.
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